
Copyright © Siemens AG 2008.

Corporate Technology

System and Application Analysis with LTTng
Project examples

 Serial input latency
 Sporadic delay in high prio application thread

How LTTng was used in Siemens projects to solve problems
Gernot Hillier, CT SE 2

These slides can be distributed under the conditions of the “Creative Commons BY-ND 3.0
license”, see http://creativecommons.org/licenses/by-nd/3.0/.

http://creativecommons.org/licenses/by-nd/3.0/

page 2 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Situation

 target hardware connected to serial port of „fast machine“
(Multicore, fast 64bit CPUs, ...)

high prio application has to react on signal from serial port within 10 ms

expected time for reading character from serial port: << 1ms

Problem

Unclear, undeterministic latency (several ms) from arrival of character
to wakeup of application

Possible reasons: locking, priority inversion, system load, ...?

page 3 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Method:

 Trace simple testcase: bash shell prompt on serial port (does read(), write() in an
endless loop to echo characters)

 Filter out events around IRQ arrival, then filter out right CPU

Trace output, part 1/2:

kernel_arch_syscall_entry: 308.506794 (cpu_3), 3051, bash, SYSCALL { syscall_id = 0

[sys_read+0x0/0xaa], ip = 0x7f29c1040f40 } => application blocks on read()

[...]

kernel_irq_entry: 310.147709 (cpu_3), 0, swapper, IRQ { irq_id = 4, kernel_mode = 1,

ip = 18446744071564210684 } => char arriving on serial line, IRQ 4 asserted

kernel_timer_set: 310.147722 (cpu_3), 0, swapper, IRQ { expires = 4294944731, function =

0xffffffff80245288 [...] } => timer set, calling function delayed_work_timer_fn()

kernel_irq_exit: 310.147728 (cpu_3), 0, swapper, SYSCALL { handled = 1 }

=> now CPU does nothing (no event) for nearly 3 ms

page 4 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Trace output, part 2/2:

kernel_irq_entry: 310.150507 (cpu_3), 0, swapper, IRQ { irq_id = 239, kernel_mode = 1, ip =

18446744071564210684 } => timer interrupt occurs (HZ = 250)

[...]

kernel_sched_schedule: 310.150549 (cpu_3), 14, events/3, SYSCALL { prev_pid = 0,

next_pid = 14, prev_state = 0 } => workqueue thread for CPU 3 gets scheduled

kernel_sched_try_wakeup: 310.150562 (cpu_3), 14, events/3, SYSCALL { pid = 3051, state

= 1 } => workqueue thread wakes up ...

kernel_sched_schedule: 310.150570 (cpu_3), 3051, bash, SYSCALL { prev_pid = 14,

next_pid = 3051, prev_state = 1 } => ... our target process

kernel_arch_syscall_exit: 310.150585 (cpu_3), 3051, bash, USER_MODE { ret = 1 }

=> read() returns, target application ...

kernel_arch_syscall_entry: 310.150600 (cpu_3), 3051, bash, SYSCALL { syscall_id = 1

[sys_write+0x0/0xaa], ip = 0x7f29c1040fc0 } => ... can finally echo character

page 5 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Serial input latency

Further steps

Code review of Linux serial driver, search for usage of work queues
(serial8250_interrupt → serial8250_handle_port → receive_chars → tty_flip_buffer_push

→ schedule_delayed_work → queue_delayed_work → queue_delayed_work_on)

Result: Linux serial code uses delayed work queues (delay: 1 jiffy) to
handle incoming characters

Reason: don't wake up userspace on each character
=> reduce overhead, increase throughput for „normal applications“

Conclusion

 throughput optimization in Linux serial code conflicts with our use case

Own, simple serial receive routine was implemented for critical path

page 6 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Situation

multi-threaded application with a number of low-prio workers and high-
prio thread with „soft realtime“ requirements

 large C++ application using rich middleware

 full code review (down to system call level) very time-consuming

Problem

unclear, sporadic delays at some code points

Possible reasons: system load, locking, application problems, ...?

page 7 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Method:

 roughly identify problematic code points with application time stamping

 mark problematic code passages with invalid syscalls (syscall 600 at start of code
point, 601 after code point if delay too high); LTTng userspace markers not ready

 Filter out events between syscalls, then filter out right CPU

Trace output, first try (excerpt):

kernel_arch_syscall_entry: 565.743 (cpu_5), 3309, PrioThread, { syscall_id = 600 }

kernel_arch_syscall_exit: 565.743 (cpu_5), 3309, PrioThread, { ret = -38 }

kernel_sched_schedule: 565.743 (cpu_5), 0, swapper, { prev_pid = 3309, next_pid = 0,

prev_state = 2 } => kernel switches to idle task for unknown reason

kernel_arch_trap_entry: 565.774 (cpu_5), 3309, PrioThread, { trap_id = 14, ... } => process

returned from page fault after 30 ms!

kernel_arch_syscall_entry: 565.774 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

page 8 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Method:

 Review kernel code => trace marker in page fault is too late

 Add additional trace markers to arch/x86/mm/fault.c:do_page_fault

Trace output, second try (excerpt):

kernel_arch_syscall_entry: 575.226 (cpu_5), 3309, PrioThread, { syscall_id = 600 }

kernel_arch_syscall_exit: 575.226 (cpu_5), 3309, PrioThread, { ret = -38 }

kernel_arch_page_fault_entry: 575.226 (cpu_5), 3309, PrioThread { ip = 0x7f1a3c073d9c }

=> theory confirmed, delay is caused by page fault

kernel_arch_page_fault_addr: 575.226 (cpu_5), 3309, PrioThread, { addr =

139735431535128, ip = 0x7f1a3c0 } => additional trace point to get faulting address

kernel_sched_schedule: 575.226 (cpu_5), 3336, WorkThread, { prev_pid = 3309, next_pid =

3336 } => This time, another low prio thread is runnable and scheduled

kernel_arch_trap_entry: 575.258 (cpu_5), 3309, PrioThread, { trap_id = 14, ... }

kernel_arch_syscall_entry: 575.258 (cpu_5), 3309, PrioThread, { syscall_id = 601 }

page 9 12.2008 © Siemens AG, Corporate TechnologyGernot Hillier, CT SE 2
<licensed under Creative Commons, BY-ND>

Unclear delay in high prio application thread

Further steps

decoding of page faulting address (with the help of /proc/<pid>/maps)
=> mmaped area on disk

code review for access to mmaped disk area

Conclusion

commonly used application function used by high prio thread caused
access to mmaped area on disk

application code restructuring to get rid of this access

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9

